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Hazardous Substances, the Environment
and Public Health: A Statistical Overview
by William G. Hunter* and John J. Crowleyt

The purpose of this paper is to provide an overview of the statistical problems that exist and procedures
that are available when attempts are made to assess the possible harm which has been or might be caused by
substances in the environment. These issues bear directly on important decisions of public policy such as
those related to the establishment and enforcement of regulations.

Some Complexities of the Problem
The central problem, which is illustrated in Figure

1, is to elucidate the relationship between human
health and factors such as the food we eat, the air we
breathe and our genetic make-up. This picture is
deceptively simple. In fact, much careful, expensive
and time-consuming detective work is necessary to
unravel the complex mysteries of what factors or

combination of factors cause what effects. The sci-
entific goal is to develop a clear picture of this com-
plicated reality.
Environment to most people means the air, water,

and land around us, including animal and plant life
and things we have made. In the public health field,
environment tends to be defined as all external fac-
tors that act on an individual, which includes every-
thing except genetics. The effect of exercise for ex-

ample, is then classified as an environmental factor,
as indicated in Table 1.
One major problem in trying to discover which

environmental factors are harmful to human health is
the great number of such factors. Some of them are

listed in Table 1. There are two difficulties here: (1) It
is virtually impossible to be sure that all the impor-
tant factors are present in a list ofthis kind unless one
goes to the extreme of simply listing all factors that
exist, which makes the problem unmanageable given
our current capabilities. (2) Data of sufficient quan-
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tity and quality do not exist on all factors of interest,
especially when it is desired to estimate the effect of
two or more factors acting together.
Besides the problem of the great number of fac-

tors, however, there are many others (see Table 2).
Lurking variables may be present. A lurking variable
is one that has an important effect and yet is not
taken into account in the analysis because its ex-
istence is unknown or, if its existence is known, its
influence is thought to be negligible or data on it are
unavailable. Even if all the important factors are
included in an analysis and data are available on all of
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FIGURE 1. The basic question: what factor or combination of
factors cause what effects on human health?
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Table 1. Some environmental factors that have an influence on
public health.

"Food" Air Other

Asbestos Cigarette smoke Radiation
Nitrates Carbon monoxide Sunlight
Coloring Hydrocarbons Noise
Saccharin Nitric oxides Exercise
Pesticides Photochemical oxidants
Herbicides Sulfur oxides
Drugs Particulates
Arsenic Asbestos
Barium Fluorides
Cyanide Acid mist
Silver Lead
Selenium Beryllium
Lead Mercury
Mercury Other trace elements
Chromium
Cadmium
Other metals

them, difficulties in interpretation can arise because
of partial or complete confounding. Such problems
are usually most severe in situations where the data
have not been collected from an experimental design
but rather where the data are historical or hap-
penstance in nature, such as in epidemiological
studies. For a further discussion of statistical aspects
of lurking variables, confounding and other hazards
ofanalyzing historical records, see Box, Hunter, and
Hunter (1). Some of these issues are addressed for
the particular case ofberyllium by Wagoner, Infante,
and Mancuso (2). The difficulties of interpretation
when there are many lurking and confounding vari-
ables are illustrated by the situation in breast cancer,
where there is the following constellation of corre-
lated factors: height H, weight W, obesity (WIH2,
Quetelet's Index), and surface area (H0 42 W0O51); also
number of pregnancies, age at first pregnancy, lacta-
tion, early menarche, artificial menopause, and
length of menopause (3, 4, 27). Considering also that
many of these are related to nutrition, genetics, and
socioeconomic status, the situation is difficult in-
deed.

Factors can interact with one another to produce a
synergistic effect, that is, one that is more desirable
or undesirable than would be expected on the basis
of linearity and additivity from the results obtained
with the factors individually. Such phenomena are
sometimes called potentiation, promotion, or inhibi-
tion. For example, suppose there are two factors. In
the absence of the second factor, suppose the first
one at a certain level xi produces an effect y 1. In the
absence of the first factor, suppose the second one at
a certain level X2 produces effect y2. When they are
both present in the amount xi + X2, the combined

effect may well be less than or greater than y1 + y2,
and if this happens the factors are said to interact.
Promoters are associated with results that are
greater than yi + y2 and inhibitors with results that
are less than yi + y2. Recent research, for example,
has investigated the role of promoters and inhibitors
for cancer. Andur (5) mentions some of these points
about interactions, promoters, and inhibitors with
reference to research on sulfur oxides. Speizer et al.
(6) recount an incident in which high concentrations
of sulfur dioxide (35 ppm) in a laboratory environ-
ment- filtered air was mixed with the chemical and
breathed - produced dramatically less severe ef-
fects than lower concentrations (6 ppm) in a paper
mill. It was hypothesized that sulfur dioxide became
attached to particles present in the air in the mill thus
permitting it to penetrate deeper into the tracheo-
bronchial tree. Alternatively or in addition, because
of interactions some of the sulfur dioxide in the mill
may have been present in the form of acid droplets
or, given the special circumstances that existed, may
have been more readily converted into sulfuric acid.
Nonlinearities were probably present as well.
Fraumeni et al. (7) are the latest to report synergism
between smoking and/or asbestos exposure in caus-
ing lung cancer. As a further example, recent labo-

Table 2. Some problems that complicate the interpretation of data
on hazardous substances and public health and the establishment of
appropriate regulatory mechanisms based on such interpretation.

No. Problem

I Many potentially important factors need to be assessed.
2 Lurking variables may be present.
3 Effects offactors may be partially or completely confounded,

making the disentangling of individual effects difficult or
impossible.

4 Relevant response functions may contain interactions and
nonlinearities.

5 Some effects are only manifest after long latency periods.
6 Conducting experiments on humans is extremely compli-

cated for ethical and scientific reasons.
7 Extrapolation of results from animals to humans is fraught

with uncertainties.
8 Extrapolation of results from high to low dose is fraught with

uncertainties.
9 Experiments at low dose are usually prohibitively expensive.
10 It is unclear whether thresholds exist, and, whether they do

or not, it is also unclear what the ramifications should be as
far as regulatory action is concerned.

11 Factors can act indirectly to produce effects on health.
12 The relationships between legal concepts such as endanger,

harm, risk and equity, and scientific conclusions based on
quantitative toxicological data are complex.

13 In establishing policy, potential benefit should be balanced
against potential harm, and costs should be considered.

14 Money, time, and resources available for this work are lim-
ited.
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ratory evidence indicates that saccharin, if anything,
may be a promoter ofcarcinogenic activity but only a
weak carcinogen (8). Nonlinearities in response re-
lationships occur when, say, k times the basic level
Xi of a factor does not produce k times the basic
effect y1 of that factor.
Some factors only become apparent after long la-

tency periods; for example, data suggest that it may
take many years before the carcinogenic effect of
exposure to asbestos manifests itself.
Conducting experiments on humans, of course, is

extremely difficult because of ethical and scientific
reasons (9). Thus tests are performed on animals.
But at low levels ofexposure corresponding to those
encountered by humans (low-dose experiments), the
resulting small effects are extremely hard to detect
unless very large numbers of animals are used. Often
this number is so big that it makes such testing pro-
hibitively expensive. Consequently high doses are
used, and results at relevant low-dose levels are ob-
tained by extrapolation. As we shall discuss later,
crucial decisions must be made about what models
should be used and, given the model, what methods
of inference should be employed. With a given set of
data, wildly different answers are obtained depend-
ing primarily on what model is used. But, assuming
that satisfactory answers exist regarding the ex-
trapolation of animal experiments from high to low
doses, the important question remains ofwhat do the
data from experiments on the effects of certain fac-
tors on the health ofanimals tell us about the possible
effects ofthose factors on the health ofhumans. How
best to make this extrapolation (or leap) from ani-
mals to humans is the subject, either directly or
indirectly, of much current research work. Refer-
ences on extrapolation from high to low dose and
extrapolation among species, have been compiled by
Thomas and Blair (10-25).
The issue of thresholds is also controversial (14).

But even if thresholds are shown to be present in
isolated controlled experimental situations, there are
those who argue that our bodies, which exist in a
polluted environment, are "saturated" already and
cannot tolerate any added toxic stress. That is, they
argue that for toxic substances the controversy
about thresholds is largely irrelevant (26).

Factors can act indirectly to produce effects on
health; for example, there is the postulated link be-
tween presence offluorocarbons and the depletion of
stratospheric ozone and the higher incidence of skin
cancer. As another example, consider the heating of
a receiving water as a result of the operation of a
power plant and its possible deleterious effect on
plant and animal life there and, in combination with

other actions of this kind, its possible ultimate effect
on our well-being.

In the formulation of policy with regard to public
health, the relationships between legal concepts
such as endanger, harm, risk, and equity, and scien-
tific conclusions based on quantitative toxicological
data are not given due consideration, mainly because
they are not well understood (28-30). In establishing
policy, potential benefit should be balanced against
potential harm, and costs should be considered (31,
32). A special issue discusses food additives, color
additives, animal drugs, ritalin, and vinyl chloride;
attention is given to the Toxic Substances Control
Act and to problems of assessing environmental risk.
An annotated source guide to information on toxic
substances is given by Ross (33). The current situa-
tion with regard to the use of nitrites in meat illus-
trates the kind of considerations that must be
weighed. Evidence suggests this additive is as-
sociated with cancer but prevents botulism, so re-
ducing one of these risks increases the other (34). A
similar situation exists with regard to drugs. In the
Final Report of the Review Panel on New Drug Reg-
ulation (35), for example, it is stated that:

"The legal requirement that new drugs be proven 'safe' and
'effective' is imprecise since no drug is absolutely safe or
always effective. The statutory standard should be amended to
reflect the fact that assessing the value and ultimate approva-
bility of a new drug entails weighing its risks against its overall
benefits."
The list in Table 2, of course, is not exhaustive.

Another problem is that the responses (the develop-
ment, say, of different cancers) are sometimes ex-
tremely difficult to determine and may be multiple in
nature (different sites and cell types of cancer, for
example). In addition, there may be statistical dif-
ficulties. Current methods of analyzing time-to-
tumor data require the specification of tumors as
either rapidly and uniformly fatal, so that deaths with
tumor represent incidence data, or never fatal, so
that such deaths represent prevalence data (36, 37),
while the truth is usually somewhere in between. An
approach to the intermediate situation has been
given by Turnbull and Mitchell (38). Also needing
attention is the role of competing causes of death
(39).
Another complication in formulating sensible reg-

ulations is that high pollution levels measured in one
location may actually originate hundreds of kilomet-
ers away. The Federal Standard of 0.08 ppm for
ozone can be exceeded in places quite distant from
the New York City metropolitan area because of
pollution sources in that urban center; this phe-
nomenon has also been observed in Los Angeles and
elsewhere (40). There is also the difficulty of
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properly taking into account data that are serially
correlated in time (41, 42). The list in Table 2, how-
ever, does serve to illustrate some of the complica-
tions involved in trying to assess the influence on
public health of important environmental factors and
to implement policy to remedy the situation (41,
4346).

Environmental Regulations,
Scientific Data, and Assumptions

Figure 2 illustrates the way in which environmen-
tal regulations are related to scientific data and
assumptions. Data are analyzed on the levels of ex-
posure to certain potentially toxic or hazardous sub-
stances and the associated indicators of health.
Based on these analyses, certain scientific conclu-
sions are drawn regarding the possible harmful effect
of selected substances. Making use of these conclu-
sions and taking into account relevant economic,
social, political, and technological factors, legis-
lators establish environmental regulations governing
the production, use, and disposal of these sub-
stances. The diagram in Figure 2 can be viewed as a
structure resting on the twin foundations of data and
assumptions. Data are generally preferable for this
purpose because they offer a firmer basis on which to
erect this regulatory edifice. Unfortunately, how-
ever, data are frequently unavailable and con-
sequently, in order to proceed, it is necessary to

scientific
analysis

data on toxic assumptions
substances and
public health

FIGURE 2. Regulatory structure and its twin scientific bases: data
and assumptions.
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make up for deficiencies in the data with assump-
tions. [Sometimes, even if data are available, they
are of dubious value; for example, consider the ex-
periments on the color additive FD&C Red No. 2
described by Boffey (47)].
Lawyers are involved in the establishment and

enforcement of regulations and in disputes that
sometimes arise in this context. In scientific studies,
statisticians help plan the data collection process and
analyze these data once they become available. We
discuss this point in more detail later. Statisticians
work with toxicologists, epidemiologists, and other
investigators interested in data on both animals and
humans.
Assumptions sometimes play an extremely im-

portant role. Obviously if the assumptions are incor-
rect, the regulations based on them may be inapprop-
riate. In terms of Figure 2, if the assumptions are a
major part of the foundation for the structure, then if
they are shaky - or worse, flatly wrong - the
structure may tilt, pointing therefore in some inap-
propriate direction, or it may even collapse. What
are some of the most important assumptions that are
injected into this process? The most important all
involve extrapolations from the known to the un-
known. We cite four examples.

First, there is the problem of extrapolating from
high to low doses in animal experimentation. As-
sumptions are routinely made about which model to
use (one-hit, two-hit, probit, and other empirical
models); this involves making assumptions such as
the existing or non-existence of thresholds and
whether detoxification mechanisms work in the
same manner at low doses as they do at high doses.
Given a model, one must make assumptions to select
the best statistical technique to use (Mantel-Bryan or
some alternative).
Second, there is the problem of extrapolating from

animals to humans. Assumptions play a very impor-
tant role here, especially in determining on what
basis this can best be done. By the Delaney Clause,
any food additive that is shown to produce cancer in
any animals or humans is assumed to be potentially
hannful to humans and its use, therefore, must be
banned. A tacit assumption here is that this risk, no
matter how slight, automatically outweighs any ben-
efits, no matter how great.

Third, there is the problem of extrapolating from
controlled experiments to the real world. The main
assumption made is that variables other than those
studied have been properly taken into account.
Controlled experiments, for example, have shown
that fluorocarbons can react with ozone and that
fluorocarbons are stable compounds. The assump-
tion has been made that the chemical reactions ob-
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served in the laboratory take place in the stratos-
phere, thus depleting the ozone layer there. As a
consequence, regulations have been established in
several countries limiting the use of fluorocarbons.
The United States is one of these countries. In some
countries, however, there are doubts about the basic
assumptions necessary to reach these conclusions
about ozone depletion. Consider one further ex-
ample in which we have the opposite situation.
Suppose controlled experiments (say, standard tox-
icology tests with mice) indicate that a certain sub-
stance produces no detectable ill effects. Does this
mean this substance is safe? Before drawing that
conclusion one must assume that promoters do not
exist in the real world that act together with the
tested substance (an interaction) to produce un-
desired effects. In a controlled experiment such a
promoter may have been excluded so that the ex-
perimental observations show no effect of the sub-
stance even though in normal use its effect might be
substantial.

Fourth, there is the problem of extrapolating from
observational (for example, epidemiological) studies
to conclusions about cause and effect. The main
assumption made is that confounding variables have
been taken into account in the analysis. Most of the
effort involved in the interpretation of such data,
which is extremely tricky business, is expended on
trying to check on this assumption. Epidemiological
studies often focus on the possible influence of a
single factor on a particular disease. If the mecha-
nism involves more than one factor, such a study
might fail to yield reliable results. Consider the re-
cent interest in the possible contribution of pro-
moters in the development of cancer (48).
To recapitulate, there is a great deal of reliance on

assumptions because, when data are lacking, as-
sumptions are needed to take their place, and for
many aspects of the general situation regarding the
environment, hazardous substances, and public
health, data are simply unavailable. A discussion of
this point in a legal setting is given by Thomas (29),
and the role of assumptions in modeling the disper-
sion of air pollutants is treated by Dinman (49).
When an assumption must be made, there is often

a spectrum from which to choose and there is an
understandable tendency to be conservative in this
regard. Figure 3, in a nutshell, shows why this is so.
Of the two mistakes that can be made- regulating a
substance that is not hazardous and not regulating
one that is- the more serious one is generally felt to
be the latter.
With regard to cancer, heart, and lung disease, the

First Annual Report to Congress by the Task Force

Is this substance hazardous?

Shall we ban or
otherwise regulate
this substance?

no

yes

no

bravo!

yes

mistake

mistake bravo !

FIGuRE 3. Two mistakes that can be made in deciding whether to
regulate a particular substance.

on Environmental Cancer and Heart and Lung Dis-
ease (50) has a description of the government's prog-
ress and plans with regard to quantifying relation-
ships between environmental pollution and these
three diseases, developing strategies to reduce or
eliminate the risks associated with these pollutants,
and planning research to shed light on these prob-
lems. This report contains the conclusions that
"[t]here is evidence that risk and occurrence of
cancer, heart and lung disease increase with en-
vironmental pollution, broadly defined to include all
environmental factors . . ." and that "[c]urrent pre-
ventive measures are believed to be inadequate to
obtain desired reductions of risk and occurrence." It
also states that increased knowledge of the pollu-
tion-disease relations are needed if intelligent
policies are to be established. Abelson (51) and Hills
(52) give some observations on the impact of regu-
lations upon industry and public health.

Role of Statistics in Toxicological
Studies

In science one often begins with a certain
hypothesis (idea, conjecture, theory, or model)
which strongly influences the choice of what data to
collect. This hypothesis is then compared with the
data. Assuming the data are reliable, if these two fail
to match, the initial hypothesis is modified. An im-
proved hypothesis therefore frequently points to the
desirability of collecting new data, and so on. This
sequence may therefore be repeated many times.
Scientific work is characterized by this iterative
pattern in which learning takes place gradually by a
process of trial-and-error.
Toxicological studies typically consist of four

stages: (1) an hypothesis about, say, the possible
carcinogenicity ofa particular substance; (2) the plan
for what data are to be collected and how that is to be
done; (3) the collection of the data, and (4) the
analysis of that data. Statistics is a science that is
particularly concerned with stages (2) through (4).
The object of analysis is to attempt to extract all the
useful information from a body of data. In planning
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and monitoring the collection of data, one tries to
ensure that the data will shed light on the questions at
issue as brightly and inexpensively as possible. One
important role of statistics, then, is to help scientists
and others get reliable answers as economically as
possible.

Analysis of data is dynamic, its aim being not only
to reach answers to questions already posed but also
to raise new questions, which can lead to new
hypotheses that can provide better understanding of
how our health depends on factors in the environ-
ment. Thus another important role of the statistician
is to help conduct analyses ofdata in such a way as to
catalyze the creation of new hypotheses.

Since analysis of data is an attempt to extract all
the useful information they contain, it obviously re-
quires not just statistical expertise. For example,
Notices of Claimed Investigational Exemption for a
New Drug and New Drug Applications received by
the Office of New Drug Evaluation in the Federal
Drug Administration are supposed to be studied by
review teams consisting of medical officers, phar-
mocologists, chemists, and others.

Since raw data are never perfect, conclusions
based on them necessarily contain uncertainty.
Contributions of the statistician include helping to
quantify uncertainties in such conclusions and to
point out, where appropriate, other possible ways in
which conclusions might be wrong.

Which statistical technique is the most appropriate
to employ depends on the situation. One way to
categorize situations is on the basis of the types of
questions that are being asked. It may be that the
question is: Which substances should be tested more
thoroughly? Here the investigators may want to use
efficient screening designs that will allow them to
gather a modest amount of data on a great number of
substances, that is, they will be performing screening
tests. It may be, however, that a substance has been
chosen for testing and the question is: How does this
substance affect the responses of interest? The in-
vestigators here might be interested in developing an
empirical model that will describe the dose-response
relationship. Alternatively, it may be that the inves-
tigators want to probe deeper and the question might
be: What can we learn about the basic mechanisms
that operate in this situation? They would then be
trying to understand why they observe certain ef-
fects. In some form they would be trying to develop a
mechanistic model.
As illustrated in Table 3, many different types of

investigations can be usefully viewed in terms of the
progression of these three questions: Which? How?
and Why? Cleveland et al. (40) and Phadke et al.
(53), for instance, provide examples of environmen-
tal studies referred to in line 4 of Table 3. The better
we are able to answer the question in the bottom
right-hand corner of this table, the better we are able

Table 3. Some questions that arise in different types of studies.

Type of Screening Empirical Mechanistic
study questions questions questions

(1) Controlled experiments Which How Why
to measure effects of variables are do these variables do we observe
variables important? affect the these effects?

responses?
(2) Animal testing Which How Why

substances are do these substances do we observe
worth testing? affect animals? these effects?

(3) Human testing Which How Why
substances are do these substances do we observe
worth testing? affect humans? these effects?

(4) Environmental studies Which How Why
variables should are these variables do we observe
be considered? related to one these inter-

another? relationships?
(5) Epidemiological Which How Why

studies variables should are these variables do we observe
be considered? related to one these inter-

another? relationships?
(6) Comprehensive environ- Which How Why

mental studies, including variables and do these variables do we observe
animals and humans substances are and substances these effects?

important? affect the
environment?
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to develop effective policies for the preservation and
improvement of our environment. Ultimately,
therefore, scientists are striving to learn about the
underlying mechanisms that produce disease. This
work is often aided by trying to build models that will
adequately represent phenomena of interest.

Figure 4 illustrates how this is done. The greater
the quantity of reliable data that are available, the
better the model-building process can go forward
(box a). To create a tentative model, one might re-
quire a knowledge of biology, chemistry, mathe-
matics, physics, or engineering (box b). Upon con-
fronting the proposed model with the data, logically
the first question one wants to answer is whether
there is any evidence that the model is inadequate
(box 1). If so, one must consider in what way(s) it is
inadequate and return to the job of repairing it, or
perhaps scrapping it altogether and building an en-
tirely new one (feedback loop I). Also, if the model is
inadequate, one may want to collect more data in
order to gain more information about how best to
modify the model (feedback loop II). If the model is
found to be adequate, one then wants to obtain the
best estimates of the parameters (constants) in that
model (box 2). Then one should attempt to assess the
precision with which these estimates have been ob-
tained (box 3). If the precision is not high enough,
one can return to the field or laboratory to obtain
additional data, perhaps after improving the analyti-
cal equipment to permit more accurate data to be
collected (feedback loop III). Note that, although
logically question 1 precedes 2, in practice one must
tentatively assume that the model is adequate and
answer question 2 first and then return to consider

Use model

Parameter

estimates?

r -- - O Model adequate?

IIII III

4 Se

F1GURE 4. Schematic diagram of model-building process.

bl 4- _ J

question 1, by examining the residuals from the fitted
model. (This way of looking at model-building was
suggested to us by William Lawton of Eastman
Kodak.)
Viewed in this way, model building requires sci-

entific, technological, and statistical expertise.
Roughly speaking, it is required to have technology
to collect the data (box a), science to construct the
model (box b), and statistics to assess how well the
model fits and to estimate the parameters in the
model (questions 1, 2, and 3). Model-building proj-
ects, therefore, are typically multidisciplinary in
nature.
Models are useful to the extent they help us an-

swer questions such as the following: Which factors
adversely affect health? How, empirically, do these
factors affect health? Why, mechanistically, are
these effects observed?
Next in this paper we will consider three sets of

illustrations: the first concerning a mechanistic
model-building project for some data on animals, the
second concerning empirical model building for
some hypothetical data on animals, and the third
concerning the fundamental problem that plagues
epidemiological studies, which, of course, involve
data on humans.

Use of Mechanistic Models
Sauerhoff et al. (54) studied the dose-dependent

pharmacokinetic profile of 2,4,5-tricholorophenoxy
acetic acid (2,4,5-T), a plant growth regulator and
herbicide, following intravenous administration to
rats (Fig. 5). Concluding that the distribution and
elimination of this compound are substantially dif-
ferent for low and high doses, they state:

"There are direct toxicological implications for the dose-
dependent elimination of 2, 4, 5-T from plasma as well as from
the body. Systemic toxicity of a drug or foreign compound is
often a function of the concentration and duration of that drug
in plasma. If the drug or foreign compound is eliminated at a
slower rate from the plasma, and/or different metabolites are
formed at a high dose, then the ability of the drug and/or
metabolite to induce toxicity at the high dose will be greater.
Therefore, more severe toxicological manifestations than
would have been predicted will often occur at the high dose
level where nonlinear kinetics are operative...."
"The pharmacokinetic data presented in this report indicate

that the statistical projection of results of experiments with
large doses of 2,4,5-T to predict the hazard of exposure to
small amounts is not justified because the capability of the
body to handle the compound has been altered."

In their analysis these researchers used the
Michaelis-Menton equation

-dCldt = klCI(k2 + C)
where C is the concentration of 2,4,5-T and t is the
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time elapsed after administration of 2,4,5-T, and ki
and k2 are constants whose values are estimated
from the data. This equation has some basis in theory
and can therefore be regarded as different from
purely empirical equations, such as straight lines and
polynomials, which make no claim to explain what is
happening on a mechanistic level. Accordingly, one
might refer to the Michaelis-Menton equation as a
mechanistic response function. Actually there is an
entire spectrum stretching from the purely empirical
at the one extreme to the purely mechanistic at the
other, and it is doubtful that any model can be placed
at either extreme. All models probably have at least
some elements of both the empirical and mechanis-
tic. Therefore the labels "empirical" and "mech-
anistic" merely indicate that a model is closer to one
end of the spectrum than the other. A model can be
termed "empirical-mechanistic" if it is somewhere
in the middle of the spectrum. An example of such a
model, in which Los Angeles air pollution data are
analyzed, is given by Phadke et al. (53).
The following discussion of mechanistic models is

adapted from Box, Hunter, and Hunter (1):
A mechanistic model can contribute to scientific

understanding, provide a basis for extrapolation,
and provide a representation of the response func-
tion that is more parsimonious than one attainable
empirically. For example, we might obtain a fair
approximation locally to a response surface by fit-
ting, say, a second-degree polynomial.

If, however, a mechanistic model, believed to be
supported by the basic biology of the system, could
be verified, we would be in a much stronger posi-

1000

100

concentration of

2,4.5-T

present

in

blood

10

IsR equivalents
g plas

0.1

0.01

tion than would be attainable by mere empiricism.
This is so because a well-tested mechanistic model
does more than just graduate the data. It confirms
that our scientific understanding of the system has
been verified by the experiment. In addition, a
polynomial equation, although it may be adequate
to represent what is happening in the immediate
region of study, provides only a very shaky basis
for extrapolation. A mechanistic model, on the
other hand, can suggest with greater certainty new
sets of experimental conditions that are worthy of
investigation. This better basis for extrapolation is
provided because it is the mechanism, not a mere
empirical curve, that is being supposed to apply
more widely, and this mechanism is based on a
partially verified understanding of the system itself.
Of course, as we move in the space of the ex-
perimental variables, the mechanism may change
or estimation errors may become serious, so
unchecked extrapolation is never safe. Thus even a
mechanistic model should preferably be used only
to suggest regions where further experimentation
might be fruitful.

If the mechanistic model is well founded, we can
expect it to give a closer representation of the re-
sponse over a wider region than is possible with a
purely empirical function. Estimation of the re-
sponse will then be better, because lack of fit will
tend to be less. In addition, since a mechanistic
model is usually more parsimonious in the use of
parameters, this causes less of the random error to
be transmitted to the predicted values of the re-
sponse.

24 Use of Empirical Models

Some hypothetical dose-response data are pre-
sented in Table 4. The doses, for example, might be
the amounts of some chemical that have been ad-
ministered to some mice after they have been divided
randomly into three groups of equal size. The re-

sponse might be the proportion of the mice that de-
velop a certain type of cancer. For a given group of
mice, letd represent the dose administered andp the
proportion that respond, that is, develop cancer.

Plotting the three data points on an ordinary piece of
graph paper, as is done in Figure 6a, shows that they

Table 4. Hypothetical dose-response data.

time elapsed after administration of 2,4,5-T (hours)

FIGURE 5. Data showing the amount of 2,4,5-T present in rats after
single intravenous doses of 5 and 100 mg/kg. Data of Sauerhoff
et al. (54).

Dose d Response p

5 0.09
10 0.30
20 0.62
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FIGURE 6. Hypothetical data from Table 4, where p = proportion of animals with
cancer and d = dose administered, plotted six different ways. Values of "safe"
dose d, for the predicted value ofp equal to 10-6 are indicated.

fall reasonably close to a straight line. The line
shown in Figure 6a is the least-squares line. Ex-
trapolating this line to the point where the predicted
value ofp is zero, one obtains a dose of d = 2. This
might be regarded as a "safe" dose because, on the
basis of the fitted straight line, it is the dose level that
yields the value zero for the proportion of animals
responding. There are, however, two major sources

ofuncertainty in this answer. The first is that, even if
the true dose-response relationship were a straight
line in these metrics, the three observed values ofp
are subject to observational or experimental error
(that is, the observed values of p may differ from
their true values). Since our predicted value d5 = 2
for the dose is derived from the fitted straight line
which is derived, in turn, from the original data,
uncertainty in the original data produces uncertainty
in the predicted dose value. The second is that the

true dose-response relationship may not be a straight
line in these linear metrics.
Considering different metrics in which to fit a

straight line produces dramatically different values
for the "safe" dose, as is illustrated in Figure 6. In
Figure 6b the dose d is plotted on a logarithmic scale.
Fitting a straight line by the method of least squares
and extrapolating to the point where the predicted
value ofp is zero gives a "safe" dose of 4, twice the
value we obtained previously. In Figure 6c the re-

sponse scale is modified but the dose scale remains
linear, unchanged from Figure 6a. The quantity
-ln(1 - p) is plotted against d, and the "safe" dose is
again 4. In Figure 6d, In [-In (1 - p)] is plotted
against d on a logarithmic scale. [In these metrics it is
impossible to locate the point where p = 0 because
for this value In [- In (1 - p)] is infinite. What is
customarily done in such situations is to define as
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"safe" some sufficiently small value of p, say, 10-6
or 10-8. We will proceed using the value of 10-6 and
demonstrate that, in some circumstances, values for
the "safe" dose are many orders of magnitude dif-
ferent from the original value of 2. Notice that the
differences would be even more extreme if we had
chosen the value 10-8.] On this basis, then, in Figure
6d the "safe" dose is found to be 0.005. The dose is
once again plotted on a logarithmic scale in Figures
6e and 6f; the response is plotted on a normal proba-
bility or probit scale in the first and on a Inp-ln (1 - p)
scale in the second. These plots give "safe" doses of
0.3 and 0.02, respectively. These different ways of
plotting the data that lead to such wildly discrepant
estimates of the "safe" dose are based on several
empirical models, as indicated in Figure 6. We note
in passing that had we used 10-8 for the "safe" value
of p, the corresponding "safe" dose levels would
have been d, = 2, 4, 4, 0.0003, 0. 1, and 0.002 in the six
cases. Note also that the curve fitting we have done
is for illustration only, and that the techniques used
make different assumptions about the existence of
either a threshold or a background (zero dose) effect.
We are not recommending this method in practice.

Discussions of some of the different dose-
response models and statistical methods used in es-
timating parameters have been given by Mantel and
Bryan (22), Mantel et al. (21), Hartley and Sielken
(20), and Rai (56). Note that the plots shown in fig-
ures 6a, 6c, 6d, 6e, and 6f are associated with models
with the following names: linear, one-hit, extreme
value, pro bit and logistic, respectively.

Fundamental Problem in
Epidemiological Studies

Figure 7 shows some real data on two factors, X
and Y. If these data came from an epidemiological
study where X was the level of some factor (for
example, exposure to a certain chemical) and Y was

0

x

FIGURE 7. Observational data on two factors, X and Y.
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the measure of incidence of some disease (for ex-
ample, a certain type of cancer), there might be con-
siderable interest in them. Perhaps the question
would be raised about the possible desirability of
promulgating regulations that would result in de-
creasing the levels of X in the environment. The
implicit assumption in raising such a question would
be that the data show a cause-and-effect relationship
between X and Y.
But the data in Figure 7, which represent the num-

ber of storks X observed and the corresponding
population Y in Oldenburg, certainly do not repre-
sent a cause-and-effect relationship. In interpreting
epidemiological and other historical data of this kind,
one must always bear in mind the possibility than an
observed correlation between two quantities, no
matter how striking (or "significant"), may not be
the result ofa cause-and-effect linkage between them
but may be merely a correlation induced by the ac-
tion ofone or more lurking variables. This is the main
difficulty in trying to draw valid conclusions from
epidemiological studies and others like them that use
happenstance data as raw material instead of data
from carefully designed and controlled experiments,
especially in which randomization has been em-
ployed.
One major distinction between the social sciences

on the one hand and the physical and biological sci-
ences on the other, for example, relates to the ability
to conduct controlled experiments in which ran-
domization is used. In the social sciences it is less
often possible to perform such experiments, one
notable exception being the study on negative in-
come tax. Usually social scientists must rely on hap-
penstance data. As a consequence it is typically a
much more difficult task for them to correctly state
their conclusions in terms of cause and effect. The
crux of the matter is that correlation observed in
happenstance data does not necessarily imply cau-
sation. The phenomenon exhibited in Figure 7 is
sometimes called "nonsense correlation." Actually,
there is nothing wrong or nonsensical about this cor-
relation; the difficulty arises when one incorrectly
imputes causation in circumstances of this kind.
Therefore, perhaps a better name is "nonsense cau-
sation." But, by whatever name, examples of this
phenomenon abound.
Suppose that a certain association or correlation is

detected in a collection of historical data that sug-
gests, for example, the possibility that a certain fac-
tor causes increased incidence of some disease. If
sound research elucidates the basic mechanism by
which this factor might be linked to the observed
increased incidence, one would be more confident in
asserting a casual link than if no such knowledge of
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the underlying mechanism were available. Even if a
plausible theory is available, one might still make
mistakes in interpretation because of the presence of
interactions, experimental errors, or lurking vari-
ables that have not been appropriately taken into
account.
The major types of epidemiologic studies brought

to bear on these problems (indirect, case-control,
and occupational) all share these potential defects.
Indirect studies are correlation studies of traits of
geographic units, or studies of the same units over
time (for example, colon cancer rates by country
correlated with an estimate of the per capita con-
sumption of animal fat). Problems peculiar to this
type of study center on the use of population figures
for individual exposures and the difficulty of obtain-
ing adequate population measurements for potential
confounders. Also complicating matters are latent
periods (is the colon cancer rate to be correlated with
current or past fat consumption?) and migration.
These points are spelled out in detail by Breslow and
Enstrom (57).

Case-control studies are retrospective compari-
sons of the characteristics of individuals with a given
disease to a group of controls, often individually
matched to reduce the effect of confounding vari-
ables. The most difficult design problem with this
type of study is in the selection ofcases and controls,
and in obtaining comparable information on the two
groups. For example, hospital-based studies may
detect associations related to hospitalization rates
and not the factor of interest. This general phenome-
non is known as Berkson's fallacy and is the point at
issue in the debated association between endome-
trial cancer and exogenous estrogens (58, 70).

Reliance on hospital charts in such studies may
introduce biases because of selective questioning by
the examining health care providers or selective
abstracting by study personnel. Ziel and Finkle (59)
present a strategy to avoid selective abstracting.
Interviews and mail questionnaires are also subject
to selective recall and nonresponse.
For these reasons one looks for replication of

case-control studies, with different designs, and a
synthesis of past results, before relying on the dis-
covered associations or non-associations. For ex-
ample, with the publication of the study by Williams
et al. (60), there are now five studies purporting to
show an association between reserpine and breast
cancer, and four claiming no association. Williams et
al. discuss the previous literature, give possible rea-
sons for the discrepancies, and note that the nine
studies are consistent in the direction (though not the
statistical significance) of their results for one sub-
group.
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FIGURE 8. Controlled experiments and epidemiological studies.

Occupational studies are characterized by a de-
scription of the morbidity or mortality experience
over time of defined groups of workers, often by
relying on company or union records and death cer-
tificates. The workers' experience is then compared
to that expected from the population at large, or
internal comparisons are made (by job class, esti-
mated exposure, etc). An example ofcurrent interest
is the study of the effects oflow-level radiation on the
workers at the Hanford atomic plant (61, 62). Accu-
rate followup and classification of cause of mortality
are ofcourse problems, as is the fact that workers are
expected to be healthier than the rest of the popula-
tion (the "healthy worker syndrome"). Further dif-
ficulties are associated with finding the proper way
to measure and analyze exposure. Assessment of the
effect of radiation in the Hanford study, for example,
must take into account not cumulative exposure
(which may be misleading) but exposure history
(rate, pattern, duration, etc), as well as latency
periods, age of the workers, and calendar period of
exposure. Further discussion of these points is found
in Breslow (71) and Pasternack and Shore (63).
For a more extensive discussion of using results

from epidemiological studies to make inferences
about cause and effect, see Lave and Seskin (64),
Whittenberger (65), Tukey (66), Speizer et al. (6),
Bloomfield (42), and Weiss (67) and the references
listed therein.

Conclusion
We are not saying that controlled experiments are

better than epidemological studies in all respects and
that they should replace epidemiological studies. It is
clear that we need both kinds of investigations, as is
summarized in Figure 8. Epidemiological studies
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may yield somewhat fuzzy pictures but at least they
are pictures of the real world as it actually exists.
Controlled experiments, while they may produce
clearer pictures, do so only for simplified versions of
the complex reality which is the world in which we
live. Epidemiology presents us with landscape
paintings and controlled experimentation gives us
close-up photographs. What we want, of course, is a
clear, detailed picture of the real world. Useful infer-
ences about the environment and public health must
be based on the analysis of both types of investiga-
tions and the interchange of insights thus provided
(65).
We are definitely not advocating the attitude seen

recently on a T-shirt in Madison: "I have given up
my search for truth. I am now looking for a good
fantasy." We are saying that the problems facing us
are complex indeed, calling for multi-agency efforts
as reflected in the saccharin question (68), and for
multidisciplinary conferences such as this one.
As was mentioned in the Fourth Symposium on

Statistics and the Environment, the essential nature
of the problem was aptly summarized some years
ago by Rachel Carson (69):

"When one is concerned with the mysterious and wonderful
functioning of the human body, cause and effect are seldom
simple and easily demonstrated relationships. They may be
widely separated both in space and time. To discover the agent
of disease and death depends on a patient piecing together of
many seemingly distinct and unrelated facts developed
through a vast amount ofresearch in widely separated fields."
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